Polymorphic Structures of Alzheimer's β-Amyloid Globulomers

نویسندگان

  • Xiang Yu
  • Jie Zheng
چکیده

BACKGROUND Misfolding and self-assembly of Amyloid-β (Aβ) peptides into amyloid fibrils is pathologically linked to the development of Alzheimer's disease. Polymorphic Aβ structures derived from monomers to intermediate oligomers, protofilaments, and mature fibrils have been often observed in solution. Some aggregates are on-pathway species to amyloid fibrils, while the others are off-pathway species that do not evolve into amyloid fibrils. Both on-pathway and off-pathway species could be biologically relevant species. But, the lack of atomic-level structural information for these Aβ species leads to the difficulty in the understanding of their biological roles in amyloid toxicity and amyloid formation. METHODS AND FINDINGS Here, we model a series of molecular structures of Aβ globulomers assembled by monomer and dimer building blocks using our peptide-packing program and explicit-solvent molecular dynamics (MD) simulations. Structural and energetic analysis shows that although Aβ globulomers could adopt different energetically favorable but structurally heterogeneous conformations in a rugged energy landscape, they are still preferentially organized by dynamic dimeric subunits with a hydrophobic core formed by the C-terminal residues independence of initial peptide packing and organization. Such structural organizations offer high structural stability by maximizing peptide-peptide association and optimizing peptide-water solvation. Moreover, curved surface, compact size, and less populated β-structure in Aβ globulomers make them difficult to convert into other high-order Aβ aggregates and fibrils with dominant β-structure, suggesting that they are likely to be off-pathway species to amyloid fibrils. These Aβ globulomers are compatible with experimental data in overall size, subunit organization, and molecular weight from AFM images and H/D amide exchange NMR. CONCLUSIONS Our computationally modeled Aβ globulomers provide useful insights into structure, dynamics, and polymorphic nature of Aβ globulomers which are completely different from Aβ fibrils, suggesting that these globulomers are likely off-pathway species and explaining the independence of the aggregation kinetics between Aβ globulomers and fibrils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polymorphism of amyloid β peptide in different environments: implications for membrane insertion and pore formation.

Amyloid-β (Aβ) peptides are thought to be involved in neurodegenerative diseases such as Alzheimer's disease and Down's syndrome. They form a large number of polymorphic structures, including heterogeneous ionic pores in membranes as well as different types of fibrillar and globular structures on surfaces and in solution. Understanding the origin of these structures and the factors that influen...

متن کامل

Molecular basis for amyloid-β polymorphism

Amyloid-beta (Aβ) aggregates are the main constituent of senile plaques, the histological hallmark of Alzheimer’s disease. Aβ molecules form β-sheet containing structures that assemble into a variety of polymorphic oligomers, protofibers, and fibers that exhibit a range of lifetimes and cellular toxicities. This polymorphic nature of Aβ has frustrated its biophysical characterization, its struc...

متن کامل

Structure and Dynamics of Amyloid-β Segmental Polymorphisms

It is believed that amyloid-beta (Aβ) aggregates play a role in the pathogenesis of Alzheimer's disease. Aβ molecules form β-sheet structures with multiple interaction sites. This polymorphism gives rise to differences in morphology, physico-chemical property and level of cellular toxicity. We have investigated the conformational stability of various segmental polymorphisms using molecular dyna...

متن کامل

Amyloid β-Sheet Mimics that Antagonize Amyloid Aggregation and Reduce Amyloid Toxicity

The amyloid protein aggregation associated with diseases such as Alzheimer's, Parkinson's and type II diabetes (among many others) features a bewildering variety of β-sheet-rich structures in transition from native proteins to ordered oligomers and fibres. The variation in the amino-acid sequences of the β-structures presents a challenge to developing a model system of β-sheets for the study of...

متن کامل

Molecular Structure of β-Amyloid Fibrils in Alzheimer’s Disease Brain Tissue

In vitro, β-amyloid (Aβ) peptides form polymorphic fibrils, with molecular structures that depend on growth conditions, plus various oligomeric and protofibrillar aggregates. Here, we investigate structures of human brain-derived Aβ fibrils, using seeded fibril growth from brain extract and data from solid-state nuclear magnetic resonance and electron microscopy. Experiments on tissue from two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011